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and left-hand side of (9). Since log, (.) is a strictly increasing function 
for positive argument, it follows that 

A ( f )  =IH(f)12JH(f+ 1/2)12[Sx(f)  - &(f+ 1/2)12. 

Further, the inequality is strict if A ( f )  > 0 on a subset of 
[ - 1/4, 1/41 of positive measure. \ 

Comments: 
1) If ideal “brickwall” filters are used, then A ( f )  is zero 

(except possibly for a finite number of points), and 

Hence, (8) and (1) are identical and nothing is lost, in a 
rate-distortion sense, by separately encoding the subbands. 

2) If x ( n )  is white, then A ( f )  = 0, and again (8) is equal to (1). 
More generally, if S , ( f )  is symmetric about f = 1/4, then 
A ( f )  = 0 and (8) is equal to (1). 

3) Since log, (.) is a strictly increasing function, if A ( f )  > 0 on 
a subset of [ - 1/4, 1/41 of positive measure, then the left 
hand side of (9) is strictly larger than U:-&?, and so the 
subband coding must be suboptimum in a rate-distortion sense 
compared to encoding the source directly. 

4) For a given source and filters, numerical evaluation of 
(9) provides a straightforward way of determining the rate- 
distortion consequences of using a particular filter (for exam- 
ple, a filter with very short kernel length). 

111. PROOF OF THEOREM 

The proof of the theorem is as follows. Begin with 

2 & 2 2 2  

Substituting from (3), (4), and manipulating yields 

From (9, (6) it follows that 

and 

- 2 2  - ox Y x  ’ 
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substituting these relations into (10) yields, upon simplification, the 
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distortion of a source that may take continuously many values. The rate 
of this universal coding scheme is examined, and a general expression is 
derived for it. An upper bound for the redundancy of this scheme, 
defined as the difference between its rate and the minimal possible rate, 
given by the rate distortion function of the source, is derived. This 
bound holds for all distortion levels. Furthermore, a composite upper 
bound on the redundancy as a function of the quantizer resolution that 
leads to a tighter bound in the high rate (low distortion) case is 
presented. 

Index Terms-Uniform and lattice quantization, randomized quantiza- 
tion, universal coding, rate-distortion performance. 

I. INTRODUCTION AND SUMMARY OF RESULTS 

A. The Dithered Uniform /Lattice Quantizer 

Uniform quantization with dither, or more generally lattice quan- 
tization with dither, followed by a universal lossless source encoder 
(entropy encoder) is a simple procedure for universal coding with 
distortion of a source that may take continuous real values. This 
procedure is universal since it does not depend on the source 
statistics. Due to the dither, the distortion in this procedure is 
independent of the source value. In this correspondence, we con- 
sider the rate performance, i.e., the entropy, of the uniform (lattice) 
randomized quantizer as compared with the optimal rate given by 
the rate-distortion function of the source. 

The uniform quantizer with dither, or the randomized quantizer, 
is defined as follows. The code points of the uniform quantizer are 
{0, k A, k 2A, .. . }. The quantizer function Q :  g -+ 9? is such 
that 

Q( x )  = iA, for iA  - A/2 5 x 5 iA + A/2.  

Let Z be a random variable distributed uniformly in the interval 
[ - A / 2 ,  A 121. The universal quantizer with dither represents a 
source value x as 

(1) ~ = Q ( x + z ) - z  

where z is a sample of Z .  It is easy to show that for any difference 
distortion measure 6(x - U), e.g., a distortion measure of the form 
I x - U 1 ', the average error of this quantizer is independent of x,  
I.e.. 

1 A D  

A - A / 2  
E , { G ( Q ( X  + z )  - z - x ) }  = - J ~ ( a )  da = E .  ( 2 )  

The generalization of the uniform quantizer to the vector case is 
the lattice quantizer. The code points of a K-dimensional lattice 
quantizer form a K-dimensional lattice { L,}. The quantizer Q,( .) 
maps every vector x E into the nearest lattice point li E L , .  
For a difference distortion measure, the region of all K-vectors 
mapped into a lattice point li EL, is the Voronoi region, 

v(l,) = {XER,: ~ ( x  - l j )  5 S ( X  - l j )  forall j + i} 

Clearly, the uniform scalar quantizer is the special case, Q ,  , of the 
lattice quantizer. Now let 2 be a K-dimensional random variable 
uniformly distributed over the basic cell of the lattice, Yo = Y(O), 
the Voronoi region of the lattice point 0. The lattice quantizer with 
dither represents a source vector x E 9%' by a vector, 

(3) U = Q , ( x  + t) - Z ,  g K 3  

where z is a sample from the random vector 2. As for the scalar 
case, one can easily show that for a difference distortion measure 
the average distortion is independent of the value x; thus, only 
difference distortion measures will be considered. 

The quantizers above can be used to encode a source vector 
x E g as follows. In the scalar case, a dither is added indepen- 
dently to each source component and the result is then quantized 
component by component. In the lattice case, we assume that K 
divides n and the input is considered as a concatenation of n / K  
K-dimensional vectors, quantized independently, using independent 
vector samples of the dither. In both cases the entropy coder will 
then take into account the statistical properties of the entire n-di- 
mensional vector. 

B. Previous Results 

In [ 11 and [2], the rate of these quantizers, in encoding a general 
n-dimensional source, was compared to the rate achieved by the 
optimal entropy-constrained vector quantizer (ECVQ). (This opti- 
mal n-dimensional ECVQ can be designed, e.g., using the tech- 
nique of [3].) It was shown, for example, that for a block of length 
n ,  emitted from any source, X ,  

where e,(.) is the randomized scalar quantizer having a step size 
A, E = A2/12 is its mean square error, &&,(E; X )  is the optimal 
n-dimensional ECVQ for the source X having a mean-square error 
E ,  and H ( . )  is the entropy function that may denote here either a 
regular entropy or a differential entropy. The results in [l] and [2] 
were derived for a slightly different realization of the dither vector 
where the same sample Z is repeated n times. Throughout the 
correspondence, the logarithm base is 2 and the entropy is measured 
in bits. Note that 1/21og47re/12 = 0.754 bits. For notational 
short-hand we use H ( Q ,  12) for N ( Q , ( X  + Z )  1 Z )  and H(Q:p,) 
for H(Q,",,(E; XI ) .  

In [I], the bound (4) has also been generalized to the case of a 
lattice quantizer with dither and a mean-square error distortion 
measure, to yield the bound 

where G, is the generalized second moment of the lattice, see [4], 
i.e., 

{ ( Ix - 2(1* dx 

and f is the centroid of the polytope WO. Note that G, = 1/12, and 
the minimum value of G, - 112 *e as K --t 03 so that the mini- 
mum value of 1/21og47reG,-* 0.5. 

In [ 2 ] ,  bounds similar to (5 )  have been derived for other distor- 
tion criteria. 

C. Summary of New Results 

The main observation made in this work is that the rate of the 
randomized uniformjlattice quantizer can be written as the mutual 
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information between the input and the output of the additive noise 
channel shown in Fig. 1. The input to this auxiliary channel is the 
source to be quantized and the additive noise is uniformly dis- 
tributed over the mirror image of the quantizer basic cell, i.e., as 
the dither if the cell is symmetric. Specifically, denoting the additive 
noise by N ,  where its p.d.f. &(n) = f i ( - n ) ,  the source input 
vector by X and the output by Y = X + N ,  then, 

H ( Q 1 Z )  = I ( X ;  Y )  = H ( X +  N )  - H ( N ) .  (7 )  

As will be shown, this general result allows us to calculate universal 
upper bounds on the rate of the randomized quantizers. 

The interesting quantity for universal coding with distortion is the 
excess rate over the rate-distortion function of that coding scheme. 
We thus define the redundancy of the randomized lattice quantizer, 
of dimension K and at the distortion level E ,  as 

whereR,(E) is the rate distortion function of an n-dimensional 
random vector 

and where f u , x ( u / x )  is a conditional p.d.f. of the representation 
U given the source x, the term ( l / n ) s  = ( l /n)E, , , {G(u - x)} is 
the average distortion per source symbol between the source and its 
representation, and I( X ;  U )  = I( Xi, .  . . , X,,; Ui , * . . , U,,) is the 
mutual information between the random vectors X and U.  

From the observation (7) it will be shown that 

where C = C(6(-), K )  is the capacity of the channel of Fig. 1 
under the constraint that the input X satisfies 

1 ’  
- E ( 6 (  X ) }  5 E .  
n 

This upper bound is true for all sources and for all distortion levels. 
For a square-error distortion measure this capacity, at dimension K ,  
can be bounded by 

1 

2 C < - l o g 4 r e G K .  (11) 

Now, note that the RHS of (11) is the same value as in 111; 
however, we actually improve upon the result of [l] since the 
inequality (11) is strict and since we have bounded the difference 
between the rate of the universal quantizer and the rate-distortion 
function, while in [l] the upper bound was for the excess rate as 
compared to the optimal n-dimensional quantizer. We will also 
observe that our upper bound is reachable and thus it cannot be 
improved by a constant bound that holds for all distortion levels. As 
will be seen the bound is reached in a case that can be describes as 
“low resolution quantization. ” 

Another new result that follows from (7) is an upper bound on the 
redundancy P ~ , ~ ( E )  as a function of the distortion E .  We were 
motivated to derive this bound by the availability of upper bound, 
tighter than (10) and ( l l ) ,  for deterministic uniform and lattice 

N 

Fig. 1 .  Auxiliary channel. N - W( - A /2, A /2) for scalar uniform quan- 
tizer. N - OU( V;) for vector lattice quantizer. 

quantizers, in cases which can be characterized as “high resolution,” 
see [5] and [6]. For a square-error distortion measure, this bound on 
the redundancy can be written as 

where the first term is the bound of [5] and [6] ,  which holds for 
deterministic quantizers under the “high resolution” assumption 
made there, and the second term involves the entropy power P( X )  
of the source, and the entropy power P( X + N )  of the source with 
the additive noise of Fig. 1. Note that at high resolution, P ( X  + 
N )  = P ( X ) ,  and thus the upper bound of [5] and [6], proved there 
for deterministic quantizers, holds for randomized quantizers as 
well, i.e., 

1 
P ~ , , , ( E )  5 - log2reGK,  

2 (13) as E -t 0. 

11. DETAILED PRESENTATION AND DERIVATION 

A .  An Expression for the Rate of the Randomized 
Uniform /Lattice Quantizer 

The general expression for the rate is initially presented, in 
Theorem 1, for the scalar case, and it is then extended to the vector 
case and lattice quantizers. 

Theorem I: The entropy of the randomized uniform quantizer, 
with step-size A ,  in encoding the random variable X ,  is given by 

H ( Q I Z ) = Z ( X ; Y ) = H ( X + N )  - H ( N )  

= H ( Y )  - log A ,  (14) 

where Y = X + N ,  X is the source, N is a random variable 
independent of X distributed uniformly over [ - A 12, A /2], and 
I ( X ;  Y) is the mutual information between X and Y .  

Recall that H(Q 1 Z )  = H ( Q ( X  + Z )  - Z I Z )  = H ( Q ( X  + 
Z )  1 Z ) ,  and we are interested in this conditional entropy since in a 
randomized quantization procedure the dither is a pseudo-noise 
known to the receiver. 

Proof: The quantization levels of the uniform quantizer are 
denoted. 

The dither Z - 07/ [ - A /2, A /2]. For any sample dither value z 
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the quantizer output can take one of the values 

q; = Q (  x + z )  - z = qi - z ,  i = 0, k 1, k 2 ; .  . , 

and the probability to get such a value, 41, given z ,  is 

P ( q i  I z )  = Prob {q ,  - A/2 5 X +  z 5 4, + A/2} 

= P r o b { q i  - A / 2 5 X 5 g i + A / 2 }  

- - 

Now we observe that the p.d.f. of the r.v. Y is given by 

where * denotes the convolution operator. Thus, we can write 

The entropy of the quantizer output, conditioned on the dither, is 
given explicitly by 

= E, 

Using the dither 
explicitly as 

p.d.f., the expectation in (15) can be written 

m 1 A I 2  
H ( Q I Z ) = -  A J - A 1 2  [ -  i = - m  c ~ . f , ( q i - Z ) l o g f , ( q i - ~ ) ]  

. dz - log A 

(the summation and integration can be 
complemented to a continuous integral) 

m 

= H ( Y )  - log A,  (16) 

and this is the mutual information between the input and output of 
0 

The expression for the rate of the quantizer, as provided by this 
theorem, depends on the distortion via the uniform quantizer step 
size A. For any given difference distortion measure t i ( - ) ,  we can 
use the relation 

the channel in Fig. 1. 

1 A / 2  

A - A / 2  
E = E { 6 ( z ) }  = -1 6 ( a )  da = 4(A)  (17) 

and get, by substituting A = & ' ( e ) ,  the rate as a function of the 
average distortion E .  

When we consider a vector source X = XI . . . X ,  but still use 
a scalar uniform quantizer and i.i.d. dither values Z = Z,  . . . Z,, 
it is easy to show by a straight-forward extension of Theorem 1 that 
the rate per symbol of the scalar randomized quantizer, denoted 

1 1 1 
--H(Q,IZ) = -Z(X;  Y )  = - H ( Y )  - l o g A ,  (18) 

where Y = X + N is the output of the auxiliary channel with input 
X .  The quantizer step size now defines the distortion per symbol E 

via 

where D" is the n-dimensional cube {U ER":  - A / 2  I U, I A 12) 
and where the last equality holds when the distortion measure 
satisfies 6(x - U) = C:,16(x, - U,), i.e., it is a single symbol 
distortion measure. 

The most general case we consider is the quantization of an 
n-dimensional vector source using a randomized K-dimensional 
lattice quantization. As noted before, we assume that K divides n;  
the source vector is divided into n / K  vectors of dimension K and 
each subvector is coded independently. The randomized lattice 
quantization is performed by first adding a dither Z ,  to each source 
subvector X K ,  of dimension K ,  and then representing the result by 
the nearest lattice point. The dither vector is uniformly distributed 
over the lattice Voronoi cell Yo. 

Let NK be a random K-dimensional vector distributed uniformly 
over % , where % = { x: - x E "Yo} is the reflection of Yo. Let 
Z ,  X ,  and N be concatenations of the n / k  subvectors Z,,  X ,  
and N,, and let Y = X + N .  Then the rate (per symbol) of the 
randomized lattice quantizer in encoding the entire n-dimensional 
source vector X is 

1 1 1 1 
- H ( Q , I Z )  = - I ( X ;  Y )  = - H ( Y )  - -10gV, 
n n n K (20) 

where V is the volume of the K-dimensional Voronoi cell of the 
lattice. This generalization of Theorem 1 is shown in Appendix A. 

As in the scalar case, the average distortion per symbol is 
expressed in terms of the volume V ,  

where (Yo)"/, is the n/K-fold Cartesian product of the cell "yo, 
and the last equality holds when the distortion measure can be 
expressed as a sum of K-dimensional distortion measures. 

B. Universal Upper Bound on the Redundancy of Randomized 
Quantizers 

The general expression for the randomized quantizer entropy, 
presented above, does not provide an insight to its performance with 
respect to the optimal performance. In this section we derive a 
universaI upper bound for the difference between this entropy and 
the rate distortion function, i.e., for the redundancy of the random- 
ized quantizer. We start again with the scalar case. 
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Theorem 2: The redundancy of the scalar uniform randomized 
quantizer satisfies 

P I , ! ( € )  =f f (QIZ)  - R ( E )  5 C ,  (22) 

where E = l/A &a), 6(.) is the distortion measure, A is the 
quantizer step size, R ( E )  is the rate-distortion function, and C is the 
constrained capacity of the channel of Fig. 1, 

C =  sup q x ;  X+N) 
{ fxCx) :  E{GCX))St) 

- - SUP I (  X ;  X + N). (23) 
{ ~ X C X ) :  / G ( x ) f x ( x )  d r t )  

Proof: The ratdistortion function is the minimum of I (  X ;  U )  
over all U satisfying 

E ( 6 ( X -  U ) }  I E ,  (24) 

where, since the minimization is over fUlX(u/x), the r.v. U 
achieving the rate-distortion function may be chosen to be indepen- 
dent of N. 

From Theorem 1, H( Q I Z )  = I( X ;  Y ); thus, we can write 

H ( Q ( Z )  - I ( X ; U )  = I ( X ; Y )  - Z ( X ; U ) ,  (25) 

where we recall that Y = X + N is the output of the auxiliary 
channel. Using the relations 

I (  x ;  Y )  - I (  x ;  U )  

= H ( X ) - H ( X J Y ) -  ( H ( X ) - H ( X I U ) }  

= H ( X ( U )  - H ( X ( Y ) ,  

I (  x ;  Y I U )  - I (  X ;  U I Y )  
and 

= H (  x 1 U )  - H (  x I Y ,  U )  

- ( H (  x 1 Y )  - H (  X I U ,  y ) )  

= H ( X I U )  - H ( X I Y ) ,  

we get that 

I (  x ;  Y )  - I (  X ;  U )  = I (  x ;  Y 

I I (  x ;  Y 

Since U may be chosen independent of 

I ( X ; Y J U )  = H ( Y ) U )  - H ( N ) = H ( Y -  U I U )  - H ( N )  

I H ( Y -  U )  - H ( N )  = I ( X -  U ; Y -  U ) .  (27) 

Using (24) and recalling the definition of C, we get 

I ( X -  U ;  Y -  U )  I c. (28) 

Combining (25)-(28), we get H(QI Z )  - I ( X ;  U )  I C. This 
holds for any U satisfying (24) including U that achieves the 

0 

Let X *  be the random variable achieving the capacity in (23). It 
is easy to see that when X *  is encoded by the randomized quan- 
tizer, with distortion E ,  its rate achieves the upper bound of (22). 
Specifically, since E{6(X*)}  I E ,  the rate distortion of X *  for 

rate-distortion function, and so the proof is complete. 

distortion t is zero, (we can choose U = 0, which satisfies the 
constraint, to achieve the rate distortion function). Since Y(Q( X *  
+ Z )  I Z )  = I ( X * ;  Y )  where Y = X *  + N ,  and since X *  
achieves the capacity. 

H ( Q ( X *  + Z ) l Z )  - R ( E ;  X * )  = H ( Q ( X *  + z) l Z )  

= I (  x*; x* + N) = c. 
(29) 

We conclude, then, that the bound on the redundancy is reachable 
and so it cannot be improved by any bound that holds for all 
distortion levels. 

In Appendix B, the capacity (23) is investigated further. It is 
shown there that for a square-error distortion measure, this capacity 
can be bounded by 

1 1 4 a e  
(30) -log 1 + - < c <  - l o g - - - ,  

2 ( 2 12 

where the upper bound is achieved if the channel output, Y ,  is 
Gaussian. This bound, (1/2)log(4ae/12) = 0.754 b, is the same 
as the bound calculated in [I] for the difference between the entropy 
of the randomized quantizer and the optimal ECVQ quantizer. We 
note, however, that when summing two independent random vari- 
ables one gets a Gaussian r.v. only if these random variables are 
Gaussian. Thus, the capacity and so our bound is strictly smaller 
then (1 /2) log (4 a e /12). 

Appendix B also contains upper and lower bounds for this 
channel capacity for distortion measures of the form I x - U 1 '. 

Theorem 2 can be generalized straightforwardly to the case of an 
n-dimensional source and K-dimensional lattice (where K divides 
n).  Specifically, we get 

where QK and R,(E) have been defined above, and where now C 
is the constrained capacity of the additive noise channel, 

Note that for a general n-dimensional source and a uniform (scalar) 
quantizer, and for a single symbol distortion measure, the upper 
bound (the capacity) is the same as (23). 

The bound in (31) is tight in the sense that we can find a source 
for which the difference between the quantizer rate and the rate 
distortion function is exactly C. As in the scalar case this is the 
source that achieves the capacity (32). 

For a square-error distortion measure, 6(x - U) = 1 )  x - U I( ', 
our universal bound is the regular power-constrained capacity which 
satisfies 

- 1 log (1 + 2 x e ~ , )  < C < - 1 Iog4reGK.  (33) 2 2 

Now, notice that as K -+ 03 the minimum value of G,, i.e., the 
optimal second moment at dimension K ,  approaches 1 / 2 a e  (see 
e.g., [4]). Thus, as K -+ 03, the upper and lower bounds on the 
capacity approach each other and approach 0.5. 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992 433 

C. Bound on the Redundancy at Various Distortion Levels 
Deterministic, uniform, and lattice quantizers have been investi- 

gated by Gish and Pierce [5 ] ,  and by Gersho [6], [7]. Unlike our 
results for the randomized quantizer, the rate, or the entropy, of the 
deterministic quantizers has been calculated only in the high resolu- 
tion (low distortion) case, and for sources with a smooth probability 
density function. Nevertheless, under these conditions it was shown 
that the optimal, entropy-constrained, quantizer becomes a uniform 
(or lattice) quantizer and, in general, the rate of the deterministic 
lattice quantizer of dimension K satisfies 

where, for a square-error distortion, 

1 
limp,(€) = - log2reG,  
C+O 2 (35) 

Note that this high resolution bound is better by 0.5 bit/sample then 
our universal bound! 

We have derived an alternative upper bound on the redundancy 
that depends on the quantizer distortion. To simplify the exposition, 
we present the result in Theorem 3 for the square error distortion 
criterion. An extension to any other difference distortion measures is 
straight-forward. 

Theorem 3: The redundancy of the randomized lattice quantizer, 
for a square error distortion measure, satisfies 

1 

2 
+ - log2?reG,, (36) 

where X is the n-dimensional source to be quantized, Y = X + N 
as above, and P ( - )  is the entropy power of the corresponding 
random vector. 

Proof: Following the result in (20) 

1 1 1 
-H(Q, 12) - R n ( € )  = - H (  Y) - - log V ,  K (37) 

where V is the volume of the lattice's Voronoi cell. Since for a 
square-error distortion measure E = ( l / K ) / $ ~ ( l /  V)I(a112 d a  = 
( l / K ) / v o ( l /  V ) ( ( a ( ( *  d a ,  we get from (6) that V2', = E / G K .  

Thus, 

1 1 E  
- log v = - log - 
K GK 

Let I?:(€) be Shannon's lower bound on the rate-distortion 
function. We can write. 

1 1 

2 
R , ( E )  2 R,L(E) = - H ( x )  - - 1 o g 2 r e ~ .  (39) 

Using (37)-(39), we get 

1 

2 
+ - l o g 2 r e C K .  (40) 

Using the definition of the entropy power, e.g., P ( Y )  = 

The quantity n - ' [ H ( Y )  - H ( X ) ]  = 1 / 2 l o g ( P ( Y ) / P ( X ) )  
can be a measure of the quantizer resolution; it tends to zero for 
high resolution quantization and smooth source density. 

Consider, indeed, the high resolution case in details. In this case, 
we assume that for a given small E , ,  the quantizer is fine enough 
and the source p.d.f. smooth enough so that for each 5 E Vo, 

(1/2re)2(2/")H(Y), we get (36). 0 

Since f v ( a )  is the average over all 5 E YG of fx(a + t ) ,  we get 

It is easy to show, by simple algebraic manipulations, that if (42) 
holds for almost all a (besides, maybe a set of measure zero), then 
I H( Y) - H ( X )  I < t , [ H ( X )  + log M I ,  where M is an upper 
bound for fx(x). This implies, 

1 

n 
- [ H ( Y )  - H ( X ) ]  = o  (43) 

Thus, from (40), the redundancy of the lattice quantizer for the 
square-error distortion will be, 

1 1 
€,-a lim [-H(QlZ) n - R , ( E ) ]  5 5 1 0 g 2 a e G K =  t,-0 limy,(E,), 

(44) 

which is the redundancy for the deterministic quantizer, (35). Note 
that since H ( X )  = H (  Y ) ,  R ~ ( E )  approaches R , ( E )  and, thus, this 
upper bound, at high resolution, is universally achievable. 

111. EXAMPLES 

The rate of the uniform/lattice randomized quantizer, can now be 
easily assessed, for practical usage, using the expressions and the 
bounds derived in this correspondence. 

We have tested a few examples where we have used the square 
error distortion measure. In the first example, we considered the 
rate of the quantizer when it operates on a Gaussian, memoryless, 
source. The rate can be determined by (14), which gives an expres- 
sion for the exact rate, or from the bound (36). We note, however, 
that for the Gaussian source, both expressions are identical. In Fig. 
2 ,  we have plotted this rate as a function of the distortion, and 
compared it to the rate-distortion function of the Gaussian source 
(the straight line in the linear-log scale). Note that this rate is greater 
by at most 0.75 bits than the rate-distortion function, at the low 
resolution case. This is slightly less than the bound 0.754 since the 
Gaussian distribution is not the one that achieves the capacity. This 
result implies, however, that the capacity bound cannot be much 
tighter than 0.754! 

The rate of the lattice quantizer as a function of the distortion, for 
encoding this memoryless Gaussian source, is depicted in Fig. 3, 
where the rate is compared to the randomized scalar quantizer to see 
the vector advantage. The rate was again computed via (36), where 
we have assumed that G, = 1/2ae,  i.e., the excess rate over 
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mse/variance (dB) 

Fig. 2.  Rate of the uniform randomized quantizer for a Gaussian source as 
compared to the rate-distortion function. 

mse/variance (dB) 

Fig. 3 .  Rate of the randomized lattice quantizer for a memoryless Gaussian 
source, as compared to the rate of the uniform randomized quantizer. 

the rate-distortion function was only the resolution measure (1 /2) 
log ( P (  Y ) / P (  X ) ) .  As a matter of fact, using a technique similar to 
the derivation in Appendix C, this resolution measure converges as 
K + 03 to (1/2) log (1 + E /a:) where u,’ is the variance of the 
Gaussian source, and this is the redundancy illustrated in Fig. 3. 

In both Fig. 2 and Fig. 3, we have indicated (with *) the 
resolution measure of the Gaussian random variable. 

Calculating explicitly the rate distortion function can be compli- 
cated for non Gaussian sources. However, the resolution measure 
that appears in (36) for the difference between the rate of the 
randomized quantizer and the rate-distortion function can be calcu- 
lated relatively easy. In Fig. 4 we present this measure as a function 
of the quantizer step-size (normalized by the source variance, U ) ,  

for the uniform memoryless source (U), the memoryless Laplacian 
source (L) and the memoryless Gaussian source (G). Note that since 
the low resolution case of SNR = 1 correspond to A / u  = fi the 
plots in Fig. 4 correspond to high and a medium resolution cases. 

IV. SUMMARY AND CONCLUSION 

We have provided an expression and found universal upper 
bounds for the difference between the rate of the randomized 
uniform and lattice quantizers and the rate distortion function for 

c2 I- 

A /a 

Fig. 4. Resolution measure for uniform, Laplacian, and Gaussian memory- 
less sources. 

any given source. This difference, defined as the redundancy of the 
quantizer, was upper bounded by two procedures. In the first 
procedure, we achieved a bound which hold for all distortion levels 
and for all sources, and can be described as the capacity of the 
channel of Fig. 1; however, this bound is tight only for low 
resolution quantization. The second procedure leads to a bound that 
depends on the allowable distortion; this bound becomes universal 
and converges to the results obtained for deterministic uniform/ 
lattice quantizers, at the high resolution, or low distortion, region. 

Our results assume that the dither samples are drawn indepen- 
dently. When the dither is drawn only once, as suggested in [1], the 
rate of the quantizer can be slightly different. However, it is easy to 
see that the constant universal bound (the capacity bound), and our 
expression for the rate at high resolution hold in this case too. An 
expression for the rate, in general, of this alternative procedure of 
dithering has been calculated, and can be found in [8]. 

The uniform and lattice quantizers are much simpler than the 
optimal vector quantizers, which can be found by the procedures of 
[9] and [3]. There is no need to predesign these universal quantiz- 
ers, and one can use efficient algorithms, e.g., [lo], for decoding 
the lattice code. One important consequence of our result is that the 
degradation in performance can be assessed. While the bound 
presented in [l] is not useful in many practical application since it is 
too far away from the optimal performance, our expression and 
bounds can be practically important in a wide region of allowable 
distortion levels for deciding whether to choose the simple lattice 
quantizer over the more complicated ECVQ. 

APPENDIX A 
GENERALIZATION OF THEOREM I 

Let us first assume that the input random vector X is of dimen- 
sion K ,  as the dimension of the lattice. We will show that the 
entropy of the randomized quantizer is given by 

= H (  Y,) - log v ,  (45) 

where NK is uniformly distributed over and the subscript K 
refers to the fact that the vectors are K-dimensional. The probability 
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density function of the random vector Y, = X ,  + N, is given by 

By definition, 

where the expectation is with respect to X ,  and Z,.  This is the 
average of discrete entropies since QK( .) can take the values { 4;). 
Thus we can write 

The region is the Voronoi region associated with the ith 
quantization point, i.e., = Yo + q, .  The probability of a quanti- 
zation point q f ,  given the dither value z,, is 

P ( q , l  z,) = Prob{x, + Z,E } 
= Prob {x, + z K c q i  + W O }  

where the last equality was achieved using (46). Substituting (48) in 
(47) leads to 

Now, since the dither is uniformly distributed over Yo, we get 

= H (  Y,) - log v, 

since summation over the lattice points and integration over the 
lattice Voronoi cell complete each other into integration over ,; 
thus, (45) is proven. 

To get the more general result, (20), we have to follow the same 
steps as above where now instead of integrating over we 
integrate over the n /K-fold Cartesian product of these Voronoi 
cells and normalize the result to get the entropy per single sample. 
Thus, if these subvectors are i.i.d., H ( Y )  = ( n / K )  . H(Y,) ,  
I ( X ;  Y )  = ( n / K )  . Z(X,; YK) ,  etc. The result (20), however, 
holds also when the subvectors are dependent. 

APPENDIX B 
THE CAPACITY OF THE CHANNEL OF FIGURE 1 

In the appendix, we derive upper and lower bounds for the 
capacity of the channel of Fig. 1. We will present in details the 
scalar case. The extension to the vector case is not very complicated 
and it has been mentioned, in a partial way, in the body of the 
paper. 

In the scalar case, the capacity we are looking for is 

where Y = X + N ,  N -  %(-A/2 ,A/2)and  

1 AI2 

A -AI2 
E = E { 6 ( N ) )  = -/ 6 ( n )  dn = 4 ( A ) .  

A lower bound for this capacity is readily achieved using the 
entropy-power inequality 

P ( Y )  = P ( X +  N )  2 P ( X )  + P ( N ) ,  

where P ( . )  is the entropy power of the corresponding random 
variable, e.g., P ( X )  = ( 1 / 2 ~ e ) 2 ' ~ ( ~ ) .  The tightest lower bound 
achieved this way will use the input X *  that maximizes the entropy 
under the constraint E{ 6( X ) }  5 E; we denote its entropy H( X * )  
and we get the lower bound 

L 

Upper bounds for this capacity will be achieved by stating 
constraints on the output random variable and substituting in (49) 
for H( Y )  the entropy H (  Y * )  where Y *  is the r.v. that maximizes 
the entropy under these constraints. 

We now demonstrate these bounding techniques for the square 
error distortion measure. In this case E{ X ' }  5 E and E{ N ' }  = E 

= A2/12. Thus, E{ Y ' }  I 2~ and we have a second moment 
constraint on the output. Under this constraint the output that 
maximizes the entropy is Gaussian with entropy H( Y * )  = 
1 /2 log 2 a e . 2 E .  So , the capacity is upper bounded by 

1 4 a e  
C I - l o g 2 a e .  26 - - log A' = - log - 

1 1 

2 2 2 12 

= 0.754 b/sample. (51) 

The input to the channel also satisfies a second moment constraint 
E{ X ' }  5 E, so X *  is also Gaussian with entropy 1 / 2 l o g 2 a e  . E. 

Thus, the lower bound (50) becomes 

1 2 a e ~ +  1 2 ~  1 

2 12E 
c 2 -log = - l o g ( l + % )  2 

= 0.638 b/sample, (52) 

where, of course, we substituted 22H"' = A2 = 126. 
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When we generalize to the lattice quantizer case we have to 
replace G ,  = 1/12 by G, and get (33). 

Consider now distortion measure of the form I x 1 ‘. In this case 
E( I X I ‘} 5 E and E{ 1 N I ‘} = E = A‘/(r + 1)2‘. The noise en- 
tropy can be written in this case as 
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or 2”(” = a2 = 4[(r + l)el2/‘. 
The lower bound is easily found by substituting the Source x* 

that maximizes the entropy under the rth moment constraint. The 
entropy of such a source is given by 

(53’ 

Thus, the channel capacity is lower bounded by 
[9] 

1 
c r - l o g  2 [ i + r 2  ( I + -  :) ’ ( $ ) 2 ’ r ]  = ‘/, (54) [IO] K. Sayood, J .  D. Gibson, and M. C. Rost, “An algorithm for 

which takes the values 0.755,0.638,0.595; . ., 0.5 for r = 
1,2,3; . ., W. 

The upper bounding technique is slightly more complicated and 
the bound we get may be loose since we cannot easily get moments 
constraints on the output random variable Y .  We can only bound the 
rth moment using Holder’s inequality, 

A Note on the Competitive Optimality of the 
Huffman Code 

The maximum entropy of the output under this rth moment con- 
straint is given by (53) where we substitute 2‘e for E .  Thus we get 
the upper bound 

where C, takes the values 1.44, 1.254, 1.180,. . . , 1 for r = 
1,2,3;. * ,  03. We see immediately that this upper bound is loose at 
least for r = 2. It can be tightened for even r ,  i.e., r = 2 p .  In this 
case, we can use the fact that the odd moments of N are zero and 
get 

which improves (56) by l l r  and so we get 

c 5 - 1 log [ e  . 2‘-’ . .‘( 1 + +) . *] = c,, 

Meir Feder, Member, IEEE 

Abstract-It is known that a bound on the probability that the length 
of any source code will be shorter than the self information by y bits 
can be obtained using a Chebychev-type argument. From this bound, 
one can establish the competitive optimality of the self information and 
of the Shannon-Fano code (up to one bit). In general, however, the 
Huffman code cannot be examined using this technique. Nevertheless, in 
this correspondence the competitive optimality (up to one bit) of the 
Huffman code for general sources is also established using a different 
technique. 

Index Terms-Competitive optimality, Huffman code, self informa- 
tion, Chebychev inequality. 

I. INTRODUCTION 

Given the probability of a source one can design a uniquely 
decodable (UD) source code that minimizes the expected code- 
length. This expected code length must be, of course, greater than 
the entropy of the source. The optimal code in this sense would 
assign to each outcome x a codeword of length -log p ( x ) ,  the self 
information, and its expected length would exactly be the entropy. 
(Throughout the correspondence log x = log, x.) However, the 
self information may not be an integer. Incorporating the Diophan- 
tine constraints, it is well known that the Huffman code minimizes 
the expected codelength. 
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Note that C, now takes the values 0.754,0.888,. . . , 1 for r = 

2 ,4 ; . . ,w .  
Similar results have been obtained in [2] for the bounds there. 
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